Fast Numerical Contour Integral Method for Fractional Diffusion Equations
نویسندگان
چکیده
The numerical contour integral method with hyperbolic contour is exploited to solve space-fractional diffusion equations. By making use of the Toeplitzlike structure of spatial discretized matrices and the relevant properties, the regions that the spectra of resulting matrices lie in are derived. The resolvent norms of the resulting matrices are also shown to be bounded outside of the regions. Suitable parameters in the hyperbolic contour are selected based on these regions to solve the fractional diffusion equations. Numerical experiments are provided to demonstrate the efficiency of our contour integral methods.
منابع مشابه
Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملA numerical method for solving a class of distributed order time-fractional diffusion partial differential equations according to Caputo-Prabhakar fractional derivative
In this paper, a time-fractional diffusion equation of distributed order including the Caputo-Prabhakar fractional derivative is studied. We use a numerical method based on the linear B-spline interpolation and finite difference method to study the solutions of these types of fractional equations. Finally, some numerical examples are presented for the performance and accuracy of the proposed nu...
متن کاملDiscontinuous Galerkin Method for Fractional Convection-Diffusion Equations
We propose a discontinuous Galerkin method for fractional convection-diffusion equations with a superdiffusion operator of order α(1 < α < 2) defined through the fractional Laplacian. The fractional operator of order α is expressed as a composite of first order derivatives and a fractional integral of order 2 − α. The fractional convection-diffusion problem is expressed as a system of low order...
متن کاملPresentation of two models for the numerical analysis of fractional integro-differential equations and their comparison
In this paper, we exhibit two methods to numerically solve the fractional integro differential equations and then proceed to compare the results of their applications on different problems. For this purpose, at first shifted Jacobi polynomials are introduced and then operational matrices of the shifted Jacobi polynomials are stated. Then these equations are solved by two methods: Caputo fractio...
متن کاملNumerical solution for boundary value problem of fractional order with approximate Integral and derivative
Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 66 شماره
صفحات -
تاریخ انتشار 2016